Elementary abelian subgroups in p-groups with a cyclic derived subgroup
نویسندگان
چکیده
منابع مشابه
Finite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملp-GROUPS WITH MAXIMAL ELEMENTARY ABELIAN SUBGROUPS OF RANK 2
Let p be an odd prime number and G a finite p-group. We prove that if the rank of G is greater than p, then G has no maximal elementary abelian subgroup of rank 2. It follows that if G has rank greater than p, then the poset E(G) of elementary abelian subgroups of G of rank at least 2 is connected and the torsion-free rank of the group of endotrivial kG-modules is one, for any field k of charac...
متن کاملElementary Abelian Subgroups in p - Groups of Class 2 THÈSE
All the results in this work concern (finite) p-groups. Chapter 1 is concerned with classifications of some classes of p-groups of class 2 and there are no particularly new results in this chapter, which serves more as an introductory chapter. The “geometric” method we use for these classifications differs however from the standard approach, especially for p-groups of class 2 with cyclic center...
متن کاملfinite $p$-groups and centralizers of non-cyclic abelian subgroups
a $p$-group $g$ is called a $mathcal{cac}$-$p$-group if $c_g(h)/h$ is cyclic for every non-cyclic abelian subgroup $h$ in $g$ with $hnleq z(g)$. in this paper, we give a complete classification of finite $mathcal{cac}$-$p$-groups.
متن کاملPOS-groups with some cyclic Sylow subgroups
A finite group G is said to be a POS-group if for each x in G the cardinality of the set {y in G | o(y) = o(x)} is a divisor of the order of G. In this paper we study the structure of POS-groups with some cyclic Sylow subgroups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2011
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2011.03.013